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The use of De Donder relations is addressed for analysis of re-
action schemes to describe the kinetics of overall reactions. These
relations provide a simple means of determining the number of
kinetic parameters required to calculate the overall reaction rate.
These kinetic parameters for gaseous reactions are controlled by
quasi-equilibria between the reactants and/or products of the over-
all reaction with the transition states of the elementary steps, and
they are not determined by the properties of the stable reaction in-
termediates. For surface reaction schemes, one additional kinetic
parameter is required for each stable surface species that becomes
abundant on the surface. De Donder relations offer a rigorous ap-
proach for assessing whether a reaction scheme contains a rate de-
termining step, and they provide a convenient means of deriving a
series of rate expressions for cases where specific steps are assumed
to be rate determining. In addition, these relations make it possible
to calculate the maximum rate at which a given transition state may
contribute to the overall reaction rate, providing a necessary con-
dition for assessing the participation in the overall reaction scheme
of transition states identified by quantum-chemical calculations.
c© 1999 Academic Press
INTRODUCTION

Studies of chemical kinetics typically involve analyses of
reaction schemes, with the aim of describing the rate of the
overall reaction in terms of contributions from individual
elementary steps. In this respect, several issues become im-
portant. For example, how many kinetic parameters (e.g.,
preexponential factors and activation energies for elemen-
tary steps) are required in the most general case to calcu-
late the overall rate from a reaction scheme? For the reac-
tion conditions and kinetic parameters of interest, does the
reaction scheme contain a rate determining step? In addi-
tion, with the rapid advances in the application of quantum-
chemical techniques to identify the geometries, energetics
and vibrational properties of transition states, we may add
the following question: is it possible to determine whether
a specific transition state may be involved in the overall
reaction?

In the present note, we address the aforementioned is-
sues by formulating the derivation of rate expressions from
reaction schemes in terms of De Donder relations (1–5).
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In addition, we show how the overall rates of gas-phase
reactions are controlled by quasi-equilibria between the
reactants and/or products of the overall reaction with the
transition states of the elementary steps, and we show that
the overall rates are not controlled by the stabilities of the
reaction intermediates. Finally, we show how De Donder
relations may be used to derive a series of rate expressions
from a reaction scheme for cases where specific steps are
assumed to be rate determining.

We begin the analysis by considering an arbitrary gas-
phase reaction. We then show how analysis of reaction
schemes using De Donder relations can be generalized to
include reactions on catalyst surfaces. The examples cho-
sen in this respect are isobutene hydrogenation over Pt and
ammonia synthesis over Fe catalysts.

ARBITRARY GAS-PHASE REACTION

As our first general example, we consider the following
arbitrary gas-phase reaction:

R1 + R2 ⇀↽ P,

OVERALL REACTION 1

which takes place according to a three-step reaction
scheme,

1. R1 ⇀↽ 2 I1

2. R2 + I1 ⇀↽ I2

3. I1 + I2 ⇀↽ P,

REACTION SCHEME 1

where R1 and R2 are reactants, P is the product, and I1

and I2 are reactive intermediates. We note that the energy
transfer processes involved in these apparent unimolecular
reactions are assumed to be quasi-equilibrated, such that
these reactions can be written in their high-pressure limit.
At lower pressures, step 1 would have to be written as a
two-step process, involving the formation of an activated
molecule through collision with another molecule (species
M), followed by reaction of the activated molecule to form
two I1 species. In a similar fashion, steps 2 and 3 would have
6
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to be written to include the participation of species M in the
forward and reverse directions.

Holstein and Boudart (5) have recently shown how De
Donder relations may be used to assess the consistency
of reaction schemes containing closed cycles. In addition,
Boudart has shown how De Donder relations may be used
to illustrate the concept of kinetic coupling for the gas-phase
chain reaction between H2 and Br2 to give HBr (6). The
present example shows some of the advantages of using De
Donder relations to analyze open cycles.

The steady state relations for reactive intermediates I1

and I2 are written in terms of the net rates, ri, of the ele-
mentary steps as

d I1

dt
= 0 = 2r1 − r2 − r3 [1]

d I2

dt
= 0 = r2 − r3, [2]

from which it follows that

r1 = r2 = r3. [3]

This result could have been written by inspection by noting
that each of the stoichiometric coefficients for the three
elementary steps is equal to unity, i.e., the overall reaction
is equal to the simple sum of the three elementary steps in
Scheme 1.

According to the De Donder relation, we write the net
rate for elementary step i in terms of the forward rate of
the step, ri, and the affinity for the step, Ai,

ri = ri

[
1− exp

(−Ai

RT

)]
, [4]

where the affinity is equal to minus the change in the Gibbs
free energy with respect to the extent of reaction (i.e., equal
to the difference in the Gibbs free energies of the reactants
and products of the elementary step at the reaction tem-
perature and at the corresponding partial pressure for each
reactant, product, and reaction intermediate). In general,
the affinity, Ai, is expressed in terms of the standard state
Gibbs free energies, Go

j , and the activities, aj, of the j reac-
tants and products of the step,

Ai = −
∑

j

νi j G j = −
∑

j

νi j
[
Go

j + RT ln(aj )
]
, [5]

where ν ij are the stoichiometric coefficients for the j reac-
tants and products of step i. This expression can be written
in terms of the equilibrium constant for the step, Kieq,
exp
(−Ai

RT

)
=
∏

j a
νi j

j

Kieq
, [6]
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since the equilibrium constant is determined by the change
in the standard state Gibbs free energies:

Kieq= exp
[−∑ j νi j Go

j

RT

]
. [7]

For convenience, we define a dimensionless variable, zi,
equal to the exponential of −Ai/RT:

zi = exp
(−Ai

RT

)
=
∏

j a
νi j

j

Kieq
. [8]

The value of zi approaches zero as step i becomes irre-
versible and as zi approaches unity as step i becomes quasi-
equilibrated; therefore, this value of zi may be termed the
reversibility of step i. We note that the definition of the re-
versibility, zi, in Eq. [8] is simply a transform of the affinity,
Ai, in the De Donder relation for step i. We also note that the
value of zi remains bounded between 0 and 1 provided that
step i proceeds in the forward direction. If step i changes
direction, then the value of zi becomes greater than 1. In
such cases, it may be convenient to rewrite the step in the
opposite direction so that the value of zi remains less than 1.

For the three-step reaction scheme of this example, the
values of zi are equal to

z1 =
a2

I1

K1eqaR1

[9]

z2 = aI2

K2eqaR2aI1

[10]

z3 = aP

K3eqaI2aI1

. [11]

However, only two of these values are independent, be-
cause the product of the three values of zi is controlled by
the overall reversibility of the reaction, ztotal,

ztotal = z1z2z3 = aP

KeqaR1aR2

, [12]

where Keq is the equilibrium constant for the overall reac-
tion. This result follows from the relation that

Atotal = A1 + A2 + A3, [13]

where Atotal is the total change in affinity for the overall
reaction, given by

Atotal = −RT ln
[

aP

KeqaR1aR2

]
. [14]

The activities of intermediates I1 and I2 are now expres-
sed in terms of zi as
aI1 =
√

K1eqaR1 z1 [15]

aI2 =
√

K1eqaR1 z1K2eqaR2 z2, [16]
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and the net rates of the three reactions are given by

r1 = k1aR1(1− z1) [17]

r2 = k2aR2aI1(1− z2) =
√

K1eqk2a1/2
R1

aR2 z
1/2
1 (1− z2) [18]

r3 = k3aI1aI2(1− z3) = K1eqK2eqk3aR1aR2 z1z2

(
1− ztotal

z1z2

)
,

[19]

where ki are the forward rate constants for the elementary
reaction steps.

Finally, the unknown values of z1 and z2 are determined
by requiring that the net rates of steps 1, 2, and 3 are equal;
i.e.,

k1aR1(1− z1) =
√

K1eqk2a1/2
R1

aR2 z
1/2
1 (1− z2)

= K1eqK2eqk3aR1aR2 z1z2

(
1− ztotal

z1z2

)
. [20]

We may now address the issue of how many kinetic pa-
rameters are required in the most general case to calculate
the overall rate from a reaction scheme. For the three-step
reaction scheme of this example, we have three forward rate
constants, ki, and three reverse rate constants, k−i. However,
these rate constants must satisfy the overall equilibrium re-
lation:

Keq = k1

k−1

k2

k−2

k3

k−3
. [21]

Therefore, one may anticipate that five independent rate
constants would be required to determine the overall rate of
the reaction for the general case where no step is rate de-
termining. However, the minimum number of kinetic pa-
rameters required to compute the rate for this three-step
scheme is equal to 3, and these parameters, Ci, are

C1 = k1 [22]

C2 =
√

K1eqk2 [23]

C3 = K1eqK2eqk3. [24]

With values for these parameters, and from the known re-
action conditions which specify aR1 , aR2 , aP, and ztotal, we
may determine the unknown values of z1 and z2.

It is useful to note the physical significance of the three Ci

parameters. We use transition-state theory to express each
rate constant ki as

ki = ν‡K ‡i , [25]

where ν‡ is a frequency factor (that may also include the
standard state gas-phase concentration) and K ‡i is the equi-

librium constant for the formation of the activated complex
from the reactants of step i. We note that since conventional
transition-state theory assumes quasi-equilibrium between
MESIC

the reactants and the activated complex, this approach fails
when the activation barrier is typically lower than 5RT
(e.g., 7, 8). In addition, this approach is not valid for situa-
tions where multiple crossings through the transition state
take place or where quantum mechanical tunneling is im-
portant. In those common cases where transition-state the-
ory is applicable, however, we may write the expressions
for Ci as:

C1 = ν‡K ‡1 [26]

C2 = ν‡
√

K1eqK ‡2 [27]

C3 = ν‡K1eqK2eqK ‡3 . [28]

We now note that a product of equilibrium constants for
steps i can be expressed by a single equilibrium constant
for an overall reaction that is a linear combination of these
individual steps i. Therefore, it is apparent that C1, C2, and
C3 are controlled by the following lumped, quasi-equilibria:

R1 ⇀↽ Act‡1

1/2R1 + R2 ⇀↽ Act‡2

R1 + R2 ⇀↽ Act‡3,

TRANSITION STATE QUASI-EQUILIBRIA
FOR SCHEME 1

where Act‡1, Act‡2, and Act‡3 are the activated complexes for
reactions 1, 2, and 3 of Scheme 1, respectively.

From the above equilibrium relations, we observe the
important result that the rate of the overall reaction is con-
trolled by quasi-equilibria between the reactants and/or
products of the overall reaction with the activated com-
plexes of the elementary steps. Importantly, the rate of the
overall reaction is not controlled by the properties of the
stable reactive intermediates, I1 and I2.

The situation described above is illustrated in Fig. 1.
This figure shows the Gibbs free energy changes, 1‡Go

i ,
associated with the formation of the three activated com-
plexes, Act‡i , from the reactants and/or products of the over-
all reaction. To construct the plot in Fig. 1, we first determine
the change in standard Gibbs free energies for each of the
lumped, quasi-equilibria that describe the formation of ac-
tivated complexes from reactants. For example, the value
of 1‡Go

2 is given by

1‡Go
2 = Go

act2
− 0.5Go

R1
− Go

R2
, [29]
where act2 refers to the second activated complex. We then
note that the rate of step 2 is given by Eq. [18], which can
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FIG. 1. Schematic representation of Gibbs free energy barriers for
the elementary steps at particular reaction conditions. The highest bar-
rier corresponds to the second activated complex, resulting in its kinetic
parameters being the most sensitive for the rate of the overall reaction.

be written as

r2 = ν‡ exp
[−1

RT

[
1‡Go

2 −
1
2

RT ln
(
aR1

)− RT ln
(
aR2

)
− 1

2
RT ln(z1)

]]
(1− z2). [30]

The value [1‡Go
2 − 1

2 RT ln(aR1)− RT ln(aR2)− 1
2 RT ln(z1)]

corresponds to a Gibbs free energy barrier, and it is equal
to the change in Gibbs free energy for the formation of the
activated complex for the second step in its standard state,
from the reactants R1 and R2 and the intermediate I1 at the
reaction conditions. Since the Gibbs free energy decreases
by RT ln(z1) after step 1, we note that the position of the
maximum in the plot of Gibbs free energy versus reaction
coordinate for step 2 is located at

1‡Go
2 −

1
2

RT ln
(
aR1

)− RT ln
(
aR2

)+ 1
2

RT ln(z1). [31]

After doing similar analyses for the first and third steps
in Fig. 1, we find that the maxima for these steps in the plot
of Gibbs free energy versus reaction coordinate are located
at

1‡Go
1 −

1
2

RT ln(aR1) [32]

1‡Go
3 − RT ln

(
aR1

)− RT ln
(
aR2

)
. [33]

The values of zi are determined by solving the steady
state equations, and the affinities for the three steps, Ai,
are obtained from −RT ln(zi). These affinities correspond
to changes in the Gibbs free energies of the reactants and
products of the elementary steps at the reaction conditions,

e.g., at the reaction temperature and at the corresponding
partial pressure for each reactant, product, and reaction in-
termediate. The rates of elementary steps are controlled
CTION SCHEMES 499

by their respective Gibbs free energy barriers. As indicated
above, the rate of step 2 is controlled by a Gibbs free energy
barrier,1‡G2, equal to1‡Go

2 − 1
2 RT ln(aR1)− RT ln(aR2)−

1
2 RT ln(z1). We note that the (1− zi) terms in the rate ex-
pressions adjust the rates of the steps such that the net rates
are equal at steady state. Thus, a step with a low Gibbs free
energy barrier has a value of zi that is near unity.

From Fig. 1 we observe that the formation of second ac-
tivated complex has the highest Gibbs free energy barrier,
which translates into a high sensitivity of the overall rate
on the kinetic parameters for the formation of the second
activated complex. A quantitative example of such a plot
of Gibbs free energy is presented elsewhere for CO metha-
nation on Ni(111) (9).

Having determined the values of zi from the kinetic pa-
rameters Ci and the reaction conditions (ai, ztotal), we may
assess whether one of the steps is rate determining. In par-
ticular, a value of zi near unity corresponds to an affinity
near zero, and this situation indicates that step i is quasi-
equilibrated. Therefore, a particular step j is rate determin-
ing if the value of zj for that step is approximately equal to
ztotal, and all other values of zi for the remaining steps are
essentially equal to unity.

We may take advantage of this definition for the exis-
tence of a rate determining step to derive a series of rate
expressions for the kinetics of the overall reaction for cases
where specific steps are assumed to be rate determining. In
particular, the rate of the overall reaction is calculated from
the rate of the rate determining step by setting the value of
zi for this step equal to ztotal and equating all other zi terms
to unity.

For example, if we assume that step 1 is rate determining,
then the rate of the overall reaction, rtotal is given by

r total,1→rds = k1aR1

(
1− aP

KeqaR1aR2

)
. [34]

The rate expression for the situation where step 2 is rate
determining is

r total,2→rds =
√

K1eqk2a1/2
R1

aR2

(
1− aP

KeqaR1aR2

)
. [35]

The situation where step 3 is rate determining leads to the
following rate expression:

r total,3→rds = K1eqK2eqk3aR1aR2

(
1− aP

KeqaR1aR2

)
. [36]

Next, we address whether it is possible to determine
whether a specific transition state may be involved in the
overall reaction. According to the above analyses, it is clear
that the rate of any step i is given by
ri = Ci F(a1 . . .aj )F(z1 . . . zk)(1− zi ), [37]

where aj are the activities of the j reactants and products
of the overall reaction, zk are the values of zk for the k
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elementary reactions, and Ci is controlled by a quasi-
equilibrium relation between the reactants and/or products
of the overall reaction with the particular activated com-
plex under investigation. The maximum value of the rate ri

is found by equating all values of zk to unity except zi which
is set equal to zero. This situation corresponds to the case
where the activated complex is involved in an irreversible,
rate determining step. As an example, the maximum rates
of steps 1, 2, and 3 are

r1,max = C1aR1 = ν‡K ‡1aR1 [38]

r2,max = C2a1/2
R1

aR2 = ν‡
√

K1eqK ‡2a1/2
R1

aR2 [39]

r3,max = C3aR1aR2 = ν‡K1eqK2eqK ‡3aR1aR2 . [40]

Therefore, we can calculate the maximum rate at which a
given transition state may contribute to the overall reac-
tion by writing the appropriate quasi-equilibrium relation
between the transition state and the reactants and/or prod-
ucts of the overall reaction. If this maximum rate is signifi-
cantly lower than the observed overall rate, then the tran-
sition state does not participate in the overall reaction. On
the other hand, if this maximum rate is higher than the ob-
served overall rate, then the transition state may participate
in the overall reaction. This maximum rate analysis provides
a necessary, but not a sufficient, condition for assessing the
participation in specific overall reactions of transition states
identified by quantum-chemical calculations.

SURFACE REACTION: HYDROGENATION
OF ISOBUTENE OVER Pt

We next consider the case of a reaction scheme for the
hydrogenation of isobutene over a platinum catalyst (10).

H2 + C4H8 ⇀↽ C4H10

OVERALL REACTION 2

This example shows the utility of De Donder relations for
probing the kinetics of heterogeneous catalytic reactions.
In this analysis we assume that the surface is uniform and
follows Langmuirian kinetics. However, the principles de-
veloped here can be extended to nonuniform surfaces, for
example, by allowing the kinetic parameters to depend on
coverage.

A reaction scheme for isobutene hydrogenation is shown,

1. H2 + 2∗ ⇀↽ 2 H∗

2. C4H8 + ∗ ⇀↽ C4H∗8

3. C4H∗8 +H∗ ⇀↽ C4H∗9 + ∗
4. C4H∗9 +H∗ ⇀↽ C4H10 + 2∗,

REACTION SCHEME 2
MESIC

where ∗ represents a surface site. Steady state relations for
surface species H∗, C4H∗8, and C4H∗9 indicate that the net
rates of all reactions are equal.

The surface coverages by these species, θ i, can be ex-
pressed in terms of zi, the equilibrium constants Kieq, and
the partial pressures of the reactants and products, Pi,

θH =
√

K1eq PH2

√
z1θ∗ [41]

θ8 = K2eq P8z2θ∗ [42]

θ9 =
√

K1eq PH2 K2eq P8K3eq
√

z1z2z3θ∗, [43]

where the subscripts 8 and 9 refer to C4H8 and C4H9, re-
spectively.

The value of the overall reversibility, ztotal, is equal to

ztotal = P10

Keq PH2 P8
, [44]

where P10 refers to the pressure of isobutane.
The rates of steps 1–4 are given by

r1 = k1 PH2θ
2
∗ (1− z1) [45]

r2 = k2 P8θ∗(1− z2) [46]

r3 =
√

K1eqK2eqk3 P1/2
H2

P8z1/2
1 z2θ

2
∗ (1− z3) [47]

r4 = K1eqK2eqK3eqk4 PH2 P8z1z2z3θ
2
∗

(
1− ztotal

z1z2z3

)
. [48]

The primary difference between these relations and those
derived above for gas-phase reactions is the presence of θ∗

for the surface reactions. This fraction of the surface that is
not covered by adsorbed species is given by a site balance:

θ∗ = 1− θH − θ8 − θ9. [49]

Substitution of the relations for θH, θ8, and θ9 into the site
balance gives

θ∗ = 1

1+
√

K1eq PH2

√
z1 + K2eq P8z2 +

√
K1eq PH2 K2eq P8 K3eq

√
z1z2z3

.

[50]

It is important to note that this expression for θ∗ is given in
terms of zi, the equilibrium constants Kieq, and the partial
pressures of the reactants and products, Pi. Therefore, we
may determine the unknown values of z1, z2, z3, and θ∗ by
solving the steady state relations that r1= r2= r3= r4 along

with the site balance.

For this case, we see that the expressions for r1

through r4 are controlled by the following four kinetic
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parameters, Ci:

C1 = k1 [51]

C2 = k2 [52]

C3 =
√

K1eqK2eqk3 [53]

C4 = K1eqK2eqK3eqk4 [54]

These kinetic parameters, C1 through C4, are controlled by
the four following lumped quasi-equilibria.

H2 + 2∗ ⇀↽ Act‡1

C4H8 + ∗ ⇀↽ Act‡2

1/2 H2 + C4H8 + 2∗ ⇀↽ Act‡3

H2 + C4H8 + 2∗ ⇀↽ Act‡4
TRANSITION STATE QUASI-EQUILIBRIA

FOR SCHEME 2

As we showed for gas-phase reactions, the four kinetic pa-
rameters C1 through C4 are determined by quasi-equilibria
between the reactants and/or products of the overall re-
action with the transition states. In this case for a surface
reaction scheme, however, the overall reaction rate is also
controlled by the value of θ∗, which contains equilibrium
constants for abundant surface species. This expression for
θ∗, therefore, introduces one additional kinetic parameter
for each stable surface species that becomes abundant on
the surface (and thus blocks surface sites). Accordingly, the
overall reaction rate is controlled by four kinetic parame-
ters (C1 through C4) plus one additional kinetic parameter
for each stable surface species that becomes abundant on
the surface.

We now derive a series of rate expressions corresponding
to cases where each of the steps in the reaction scheme is
assumed sequentially to be rate determining. As above, we
set the value of zi for the rate determining step equal to
ztotal and equate all other zi terms to unity. If we assume
that step 1 is rate determining, then the rate of the overall
reaction, rtotal, is equal to

r total,1→rds

=
k1 PH2

(
1− P10

PH2 P8 Keq

)
[
1+

√
P10

K2eq K3eq K4eq P8
+ K2eq P8 +

√
K2eq K3eq P8 P10

K4eq

]2 , [55]
where we have used the result that

Keq = K1eqK2eqK3eqK4eq. [56]
CTION SCHEMES 501

If step 2 is rate determining, then

r total,2→rds

=
k2 P8

(
1− P10

PH2 P8 Keq

)
[

1+√K1eq PH2 + P10
PH2 K1eq K3eq K4eq

+ P10√
K1eq PH2 K4eq

]2 . [57]

The case where step 3 is rate determining leads to

r total,3→rds =
√

K1eqK2eqk3 P1/2
H2

P8

(
1− P10

PH2 P8 Keq

)
[

1+√K1eq PH2 + K2eq P8 + P10√
K1eq PH2 K4eq

]2 .

[58]

Finally, if step 4 is the rate determining process,

r total,4→rds=
K1eq K2eq K3eqk4 PH2 P8

(
1− P10

PH2
P8 Keq

)
[

1+
√

K1eq PH2 + K2eq P8 +
√

K1eq PH2 K2eq K3eq P8

]2 .

[59]

We note that the rate expressions in Eqs. [55], [57], [58],
and [59] are, in fact, traditional Langmuir–Hinshelwood
relations. The advantage of using De Donder relations in
these analyses is that this approach provides a convenient
means of deriving Langmuir–Hinshelwood relations from
the more general case where multiple steps are not in quasi-
equilibrium.

Table 1 presents kinetic parameters that have been re-
ported from experimental studies of isobutane dehydro-
genation and isobutene hydrogenation over Pt catalysts
(10). These studies involved measurements of overall re-
action rates at steady state, isotopic tracing measurements
collected with mixtures of C4H10 and D2, and microcalori-
metric measurements of heats of adsorption of isobutene
and H2 over Pt catalysts.

As an example of typical reaction conditions for
isobutene hydrogenation, we consider the case where the

TABLE 1

Kinetic Parameters for Isobutene Hydrogenation
over Pt (Scheme 2) (10)

Step Afor
a Arev

a Efor
b Erev

b

1 6.30× 105 4.50× 1010 0.0 78.0
2 3.00× 104 1.10× 1012 0.0 118.0
3 1.90× 109 7.60× 1011 71.9 41.6
4 1.30× 1012 2.90× 104 85.0 41.6

a Forward and reverse preexponential factors, Afor and Arev, respec-
−1 −1 −1
tively, in units of atm s for adsorption steps and s for desorption and

surface reaction steps.
b Forward and reverse activation energies, Efor and Erev, in units of

kJ/mol.



502 J. A. DU

reaction temperature is 673 K, and the partial pressures of
H2, C4H8, and C4H10 are 0.6, 0.2, and 0.2 atm, respectively.
For these conditions, the values of zi can be determined to
be

z1 = 0.9993

z2 = 0.9962

z3 = 0.9977

z4 = 0.0125

ztotal = 0.0124

and the corresponding values of Ai are equal to

A1 = 0.004 kJ/mol

A2 = 0.021 kJ/mol

A3 = 0.013 kJ/mol

A4 = 24.52 kJ/mol

Atotal = 24.56 kJ/mol.

The fraction of the Pt surface that is free of adsorbed
species, θ∗, is equal to 0.084 for these conditions. The most
abundant surface intermediates are adsorbed H∗ and C4H∗8,
indicating that the only kinetic parameters in the expression
for θ∗ that are significant are K1eq and K2eq.

It is clear from these values of zi that steps 1, 2, and 3
are quasi-equilibrated (zi∼ 1 or Ai∼ 0) and step 4 is rate
determining (z4∼ ztot or A4∼ ztotal) for these reaction con-
ditions.

SURFACE REACTION: AMMONIA SYNTHESIS OVER Fe

We next consider the synthesis of ammonia over an iron
catalyst (11).

N2 + 3 H2 ⇀↽ 2 NH3

OVERALL REACTION 3

The reaction scheme for this reaction can be written as

1. N2 + 2∗ ⇀↽ 2 N∗

2. H2 + 2∗ ⇀↽ 2 H∗

3. N∗ +H∗ ⇀↽ NH∗ + ∗
4. NH∗ +H∗ ⇀↽ NH∗2 + ∗

5. NH∗2 +H∗ ⇀↽ NH∗3 + ∗

6. NH∗3 ⇀↽ NH3 + ∗,
REACTION SCHEME 3
where ∗ represents a vacant surface site and N∗, H∗, and
NH∗x represent surface adsorbed species. This reaction il-
MESIC

lustrates the case where the stoichiometric numbers of the
elementary steps are not all equal, i.e., the stoichiometric
numbers for steps 1–6 are equal to 1, 3, 2, 2, 2, and 2, re-
spectively.

The net rates of the 6 elementary steps are equal to

r1 = k1 PN2θ
2
∗ − k−1θ

2
N [60]

r2 = k2 PH2θ
2
∗ − k−2θ

2
H [61]

r3 = k3θNθH − k−3θNHθ∗ [62]

r4 = k4θNHθH − k−4θNH2θ∗ [63]

r5 = k5θNH2θH − k−5θNH3θ∗ [64]

r6 = k6θNH3 − k−6 PNH3θ∗. [65]

The steady state equations take the form

r1 = 1
3

r2 = 1
2

r3 = 1
2

r4 = 1
2

r5 = 1
2

r6 [66]

and the site balance is

1 = θ∗ + θN + θH + θNH + θNH2 + θNH3. [67]

We now write expressions for all surface coverages in
terms of the values of zi for the steps of the reaction scheme,
and these expressions are solved for individual surface cov-
erages in terms of the values of zi and θ∗:

θN =
√

K1eq PN2
√

z1 θ∗ [68]

θH =
√

K2eq PH2
√

z2 θ∗ [69]

θNH =
√

K1eq PN2
√

K2eq PH2K3eq
√

z1z2z3θ∗ [70]

θNH2 =
√

K1eq PN2K2eq PH2K3eqK4eq
√

z1z2z3z4θ∗ [71]

θNH3 = PNH3

K6eqz6
θ∗. [72]

The following relation holds for the overall reversibility,
ztotal:

ztotal = P2
NH3

Keq PN2 P3
H2
= z1z3

2z2
3z2

4z2
5z2

6. [73]

The site balance is used to express θ∗ in terms of the values
of zi:

θ−1
∗ = 1+√K1eq PN2

√
z1 +

√
K2eq PH2

√
z2 + PNH3

z6K6eq
+√K1eq PN2
√

K2eq PH2K3eq
√

z1z2z3

+√K1eq PN2K2eq PH2K3eqK4eq
√

z1z2z3z4. [74]



A
ANALYSES OF RE

Next, we may write expressions for the net rates of all
steps in terms of the values of zi:

r1 = k1 PN2θ
2
∗ [1− z1] [75]

r2 = k2 PH2θ
2
∗ [1− z2] [76]

r3 = k3
√

K1eq PN2
√

K2eq PH2
√

z1z2θ
2
∗ [1− z3] [77]

r4 = k4
√

K1eq PN2K2eq PH2K3eq
√

z1z2z3θ
2
∗ [1− z4] [78]

r5 = k5
√

K1eq PN2(K2eq PH2)
3/2

× K3eqK4eq
√

z1z3/2
2 z3z4θ

2
∗ [1− z5] [79]

r6 = k6
PNH3

z6K6eq
θ∗[1− z6]. [80]

In general, the steady state rate of the overall reaction is
determined by solving for the 7 unknown values z1 through
z6 and θ∗ from the steady state relations, the site balance,
and the expression for ztotal. We now consider the case
where step 1 is rate determining, and therefore, all other
steps are quasi-equilibrated. According to this assumption,
we write

z1 = ztotal = P2
NH3

Keq PN2 P3
H2

[81]

and all other values of zi are equal to unity. The rate expres-
sion for the overall reaction is equal to the rate of step 1,
which is given by the following expression:

r1→rds = r1 = k1 PN2θ
2
∗ [1− z1]= k1 PN2θ

2
∗

(
1− P2

NH3

Keq PN2 P3
H2

)
,

[82]

where θ∗ is equal to:

θ−1
∗ = 1+

√
K1eq

Keq P3
H2

PNH3 +
√

K2eq PH2

+ PNH3

K6eq
+
√

K1eqK2eq

Keq
K3eq

PNH3

PH2

+
√

K1eq

Keq
K2eqK3eqK4eq

PH2 PNH3

P1/2
H2

. [83]

Next, we consider the case where step 3 is rate determin-
ing, and therefore, all other steps are quasi-equilibrated.
The value of zi for the rate determining step is equal to

z3 = z1/2
total =

PNH3√
Keq PN2 P3

H2

[84]
and all other values of zi are equal to unity. The rate ex-
pression for the overall reaction is equal to the rate of step
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3 divided by 2, which is given by the expression

r3→rds = r3

2
= k3

2

√
K1eqK2eq

√
PN2 PH2θ

2
∗

×
1− PNH3√

Keq PN2 P3
H2

 , [85]

where θ∗ is equal to

θ−1
∗ = 1+√K1eq PN2 +

√
K2eq PH2 + PNH3

K6eq

+
√

K1eqK2eq

Keq
K3eq

PNH3

PH2

+
√

K1eq

Keq
K2eqK3eqK4eq

PNH3√
PH2

[86]

We now address the situation where steps 1 and 3 are
reversible but not quasi-equilibrated, while all other steps
are quasi-equilibrated. The values of z1 and z3 are related
by

z1z2
3 = ztotal = P2

NH3

Keq PN2 P3
H2

[87]

and all remaining values of zi are equal to unity. At steady
state, the net rate of step 1 is equal to half the net rate
for step 3, and we obtain the following expression after
eliminating the value of z3 using Eq. [87]:

k1 PN2[1− z1] = k3

2

√
K1eq PN2

√
K2eq PH2

[√
z1 −√ztotal

]
.

[88]
This steady state relation can be written as

(1− z1) = F1
(√

z1 −√ztotal
)
, [89]

where F1 is defined as

F1 =
k3
√

K1eqK2eq PH2

2k1
√

PN2
. [90]

Solution of the steady state equation gives

√
z1 = 1

2

[−F1 +
√

4+ F2
1 + 4F1

√
ztotal

]
. [91]

We use this result for z1 to determine the value for z3; and we
then evaluate θ∗ and determine the overall rate expression
from either r1 or r3.

Table 2 presents kinetic parameters that have been re-
ported from experimental studies of ammonia synthesis
over Fe catalysts (11). These studies involved, for example,

measurements of N2 sticking coefficients, as well as vari-
ous TPD and spectroscopic studies of iron single crystal
surfaces.
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TABLE 2

Kinetic Parameters for Ammonia Synthesis
over Fe (Scheme 3) (11)

Step Afor
a Arev

a Efor
b Erev

b

1c 5.80× 101 1.32× 109 −14.6 154.8
2 7.01× 106 3.24× 1013 0.0 93.7
3 1.83× 109 1.15× 107 81.2 23.0
4 1.31× 1013 1.38× 1012 36.4 0.0
5 3.88× 1013 2.33× 1013 38.5 0.0
6 3.67× 1012 1.81× 108 39.3 0.0

a Forward and reverse preexponential factors, Afor and Arev, in units of
atm−1 s−1 for adsorption steps and s−1 for desorption and surface reaction
steps.

b Forward and reverse activation energies, Efor and Erev, in units of
kJ/mol.

c Kinetic parameters for the forward direction of step 1 include contri-
butions from a weakly adsorbed, molecular precursor species.

As an example of typical reaction conditions for ammo-
nia synthesis in laboratory reactors, we consider the case
where the reaction temperature is 723 K, and the partial
pressures of H2, N2, and NH3 are 0.75, 0.25, and 0.116 atm,
respectively (corresponding to approximately 50% of the
equilibrium conversion at this temperature). For these con-
ditions, the values of zi can be determined to be

z1 = 0.2508

z2 = 0.9993

z3 = 0.99854

z4 = 1.000

z5 = 1.000

z6 = 0.9998

ztotal = 0.2500

and the corresponding values of Ai are equal to

A1 = 8.315 kJ/mol

A2 = 4× 10−4 kJ/mol

A3 = 0.0088 kJ/mol

A4 = 7× 10−8 kJ/mol

A5 = 1× 10−6 kJ/mol

A6 = 1× 10−4 kJ/mol

Atotal = 8.335 kJ/mol.
The fraction of the Fe surface that is free of adsorbed
species, θ∗, is equal to 0.014 for these conditions. The most
abundant surface intermediate is adsorbed N∗, indicating
MESIC

that the only kinetic parameter in the expression for θ∗ that
is significant is K1eq.

It is clear from these values of zi that steps 2–6 are quasi-
equilibrated (zi∼ 1 or Ai∼ 0) and step 1 is rate determining
(z1∼ ztot or A1=Atotal) for these reaction conditions.

CONCLUSIONS

We have shown that De Donder relations provide a sim-
ple means of determining the number of kinetic param-
eters required to calculate the overall reaction rate from
a reaction scheme. De Donder analyses thereby provide
a useful starting point for conducting sensitivity analyses
of kinetic parameters in fitting reaction kinetics data. We
have shown that the kinetic parameters identified by De
Donder analyses for gaseous reactions are controlled by
quasi-equilibria between the reactants and/or products of
the overall reaction with the transition states of the elemen-
tary steps, and they are not determined by the properties
of the stable reaction intermediates. For surface reaction
schemes, one additional kinetic parameter is required for
each stable surface species that becomes abundant on the
surface. Therefore, results from spectroscopic and/or theo-
retical studies of the reaction intermediates are necessary
to determine kinetic parameters that control the surface
coverages of stable surface species that become abundant
on the surface.

As stressed by Boudart (6), De Donder relations offer a
rigorous approach for assessing whether a reaction scheme
contains a rate determining step. We have also shown that
these relations provide a convenient means to derive a se-
ries of rate expressions for cases where specific steps are as-
sumed to be rate determining. Importantly, we have shown
that De Donder relations make it possible to calculate the
maximum rate at which a given transition state may con-
tribute to the overall reaction rate, providing a necessary
condition for assessing the participation in the overall re-
action scheme of transition states identified by quantum-
chemical calculations. We believe that this application of
De Donder relations will be particularly useful in the future
as the quantum-chemical calculations become used more
extensively in catalysis research.
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